Snf1-related kinase improves cardiac mitochondrial efficiency and decreases mitochondrial uncoupling

نویسندگان

  • Amy K. Rines
  • Hsiang-Chun Chang
  • Rongxue Wu
  • Tatsuya Sato
  • Arineh Khechaduri
  • Hidemichi Kouzu
  • Jason Shapiro
  • Meng Shang
  • Michael A. Burke
  • Xinghang Jiang
  • Chunlei Chen
  • Tenley A. Rawlings
  • Gary D. Lopaschuk
  • Paul T. Schumacker
  • E. Dale Abel
  • Hossein Ardehali
چکیده

Ischaemic heart disease limits oxygen and metabolic substrate availability to the heart, resulting in tissue death. Here, we demonstrate that the AMP-activated protein kinase (AMPK)-related protein Snf1-related kinase (SNRK) decreases cardiac metabolic substrate usage and mitochondrial uncoupling, and protects against ischaemia/reperfusion. Hearts from transgenic mice overexpressing SNRK have decreased glucose and palmitate metabolism and oxygen consumption, but maintained power and function. They also exhibit decreased uncoupling protein 3 (UCP3) and mitochondrial uncoupling. Conversely, Snrk knockout mouse hearts have increased glucose and palmitate oxidation and UCP3. SNRK knockdown in cardiac cells decreases mitochondrial efficiency, which is abolished with UCP3 knockdown. We show that Tribbles homologue 3 (Trib3) binds to SNRK, and downregulates UCP3 through PPARα. Finally, SNRK is increased in cardiomyopathy patients, and SNRK reduces infarct size after ischaemia/reperfusion. SNRK also decreases cardiac cell death in a UCP3-dependent manner. Our results suggest that SNRK improves cardiac mitochondrial efficiency and ischaemic protection.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Decreased Uncoupling Protein 2 and 3 (UCP2 and UCP3) mRNA expression by endurance exercise training with and without chronic administration of nandrolone in rat heart

Introduction: The effect of regular exercise in decreasing the incidence of heart diseases is well known. The abuse of anabolic androgenic steroids (AAS) has been associated with cardiovascular disorders. Uncoupling proteins (UCPs) transport protons across the inner mitochondrial membrane thereby proton gradient can be diminished by the action of UCPs. This process will result in the uncoupl...

متن کامل

Mitochondrial porin Por1 and its homolog Por2 contribute to the positive control of Snf1 protein kinase in Saccharomyces cerevisiae.

Saccharomyces cerevisiae Snf1 is a member of the conserved Snf1/AMP-activated protein kinase (Snf1/AMPK) family involved in regulating responses to energy limitation, which is detected by mechanisms that include sensing adenine nucleotides. Mitochondrial voltage-dependent anion channel (VDAC) proteins, also known as mitochondrial porins, are conserved in eukaryotes from yeast to humans and play...

متن کامل

Mitochondrial reprogramming induced by CaMKIIδ mediates hypertrophy decompensation.

RATIONALE Sustained activation of Gαq transgenic (Gq) signaling during pressure overload causes cardiac hypertrophy that ultimately progresses to dilated cardiomyopathy. The molecular events that drive hypertrophy decompensation are incompletely understood. Ca(2+)/calmodulin-dependent protein kinase II δ (CaMKIIδ) is activated downstream of Gq, and overexpression of Gq and CaMKIIδ recapitulates...

متن کامل

Increased uncoupling proteins and decreased efficiency in palmitate-perfused hyperthyroid rat heart.

The physiological role of mitochondrial uncoupling proteins (UCPs) in heart and skeletal muscle is unknown, as is whether mitochondrial uncoupling of oxidative phosphorylation by fatty acids occurs in vivo. In this study, we found that UCP2 and UCP3 protein content, determined using Western blotting, was increased by 32 and 48%, respectively, in hyperthyroid rat heart mitochondria. Oligomycin-i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017